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Introduction 

DAIS-ITA (International Technology Alliance in Distributed Analytics and Information Sciences) is a 

collaborative partnership between the U.S. Army and the UK Ministry of Defence which brings together researchers 

from U.S. Army Research Laboratories (ARL) and UK Defence Science & Technology Laboratory (Dstl) to work 

alongside a consortium of universities and industrial research laboratories in U.S. and UK. The goal of the alliance is 

to foster collaborative fundamental research in both nations that will to enable secure dynamic semantically aware 

distributed analytics for situational understanding in coalition operations.  The members of the alliance seek to break 

down barriers, build relationships, develop mutual understanding and work in partnership to develop technology for 

the U.S. and UK military.  

The consortium is led by IBM, which has major research and development operations in both nations. U.S. 

members of the consortium are University of California at Los Angeles, University of Massachusetts at Amherst, 

Pennsylvania State University, Purdue University, Stanford University, Yale University and Raytheon BBN 

Technologies. UK members of the consortium are Cardiff University, Imperial College London, University of 

Southampton, University College London, Airbus Group and BAE Systems.  

DAIS-ITA consists of three components: The Basic Research Component and two Technology Transition 

Components, one each for U.S. or UK-led efforts. The Basic Research Component provides for fundamental research, 

the results of which will be in the public domain. The Technology Transition Components will provide for the 

application of the fundamental-research results to military, security and commercial applications to foster the best 

technologies for future defense and security needs.  

This document describes the second biennial program plan (BPP) for the DAIS-ITA Basic Research 

Component and provides an overview of the research work to be undertaken from January 15th, 2020 to January 20th, 

2021.  

The scope of basic research in the program spans two technical areas: Dynamic Secure Coalition Information 

Infrastructures (TA-1) and Coalition Distributed Analytics and Situational Understanding (TA-2). TA-1 will perform 

fundamental underpinning research for enabling distributed, dynamic, secure coalition communication/information 
infrastructures that support distributed analytics to derive situational understanding. Coalition operations at the tactical 

edge encounter severe resource constraints and rapid changes in the environment. The research in TA-1 seeks to 

develop techniques for dynamic, self-configuring services that build services “on-demand,” taking into account 

changing mission needs, context and resource constraints, while seeking to protect coalition information and assets.  

TA-2 will explore the principles underlying distributed analytics and situational understanding, taking into account 

the fact that coalition operations involve complex multi-actor situations, have information with a high degree of 

complexity, needs to be processed in a time-sensitive manner at a high tempo, and are required to align itself with 

human needs and capabilities.  

The outputs of the basic research component of the program will advance the state-of-the-art, develop 

fundamental knowledge, and provide generalizable results.  This fundamental science will be manifested in scientific 

publications in peer reviewed conferences and journals, books covering subjects in scope of the program, as well as 

trained researchers. Experimental validation of the research is critical, and any experimentation software will be made 

available across the Alliance (ideally as open source) and may be integrated into an experimental framework to enable 

wide-scale experiments to validate inter-disciplinary research. 

The research is split into 4 projects, comprised of 2-3 research tasks each, and with the 4 projects spanning two 

technical areas (TAs): 

• Technical Area 1: Dynamic, Secure Coalition Information Infrastructures 

Research is needed to provide the fundamental underpinning research for enabling distributed, 

dynamic, secure coalition communication/information infrastructures that support distributed 

analytics to derive situational understanding. 

• Technical Area 2: Coalition Distributed Analytics & Situational Understanding 

Multidisciplinary research is needed to provide the fundamental underpinnings for future coalition 

distributed analytics and situational understanding in the context of ad-hoc coalition operations at 

the tactical-edge. 
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These technical areas have associated Technical Area Leader (TAL) roles identified, with Government TALs 

(GTALs) from both government organizations (ARL and Dstl) as well as Industry TALs (ITALs) and Academic 

TALs (ATALs).  These roles are shown in figure I-1. 

This biennial program plan consists of four projects, each of which address issues that cut across both 

technical areas. From an organizational perspective, project seven and project eight address more issues in TA-1, 

while projects nine and project ten address more issues in TA-2. The four projects along with the project champions 

and task leads are shown in figure I-1.  

 

TA1: 

Dynamic, Secure Coalition 

Information Infrastructures 
 

GTALs (Kevin Chan, John Melrose) 

A/I TALs (Don Towsley, Mudhakar Srivatsa) 

 

TA2: 

Coalition Distributed Analytics & 

Situational Understanding 
 

GTALS  (Gavin Pearson, Lance Kaplan) 

A/I TALS (Alun Preece, Dave Braines) 

 

P7 

Policy-enabled Dynamic 

Infrastructure 
(Alessandra Russo) 

 

P8 

Federated Learning for 

Coalition Analytics 
(Shiqiang Wang) 

 

P9 

Defending coalitions in 

adversarial environments 
(Mani Srivastava) 

 

P10 

Ad-hoc Coalition Teams 
(Roger Whitaker) 

 

Task 7.1: 

Infrastructure Design and 

Distributed Control for 

Dynamic SDC 
(Liang Ma) 

Task 8.1: 

Distributed Online 

Learning with Multiple 

Learners 
(Mark Herbster) 

Task 9.1: 

Interpretability of Neural 

Networks in Distributed 

& Contested 

Environments under 

Incomplete Trust 
(Supriyo Chakraborty) 

Task 10.1: 

Coherence in Coalitions: 

understanding internal 

group behavior and 

dynamics in complex 

multi-domain 

environments 
(Roger Whitaker) 

 

Task 7.2: 

Federated Policy 

Learning and 

Management 
(Elisa Bertino) 

Task 8.2: 

Agile Analytics Enabled 

by Decentralized 

Continuous Learning in 

Coalitions 
(Shiqiang Wang) 

Task 9.2: 

Network intelligence from 

negative ties 
(Diane Felmlee) 

Task 10.2: 

Learning and Inferencing 

in Neuro-Symbolic 

Hybrids for Uncertainty-

Aware Human-Machine 

Situational Understanding 
(Alun Preece) 

 

 
Task 8.3: 

Cognitive Workflows: 

Goal Directed Distributed 

Analytics Using Semantic 

Vector Spaces 
(Graham Bent) 

 

Task 10.3: 

NSPL – A Neural-

Symbolic Learning of 

Generative Policies in 

Coalition Environments 
(Alessandra Russo) 

 

Experimentation 
(Dave Conway-Jones) 

 

Figure I-1: Summary of projects by technical area 

 

After describing the overall research vision, this BPP document describes each of the projects in more detail. 
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Research Vision  

Coalition operations in the future are going to be highly dynamic events, assisted in their tasks by a 

conglomerate of sensors, hand-held devices, UAVs, robots, vehicle-mounted machines and backend assets working 

as a seamless whole with the warfighters conducting the operation. We envision that all of the disparate devices in the 

coalition, both military-issued and personal assets of the warfighters, along with cloud-based assets when connected, 

can be combined into a distributed collaborative cooperative intelligent system which assists the operational goals to 

be achieved faster. We believe that the whole should be bigger than the sum of the parts, and this aggregate should 

work like a ‘distributed brain’ working in a coalition context. The goal of our program is to uncover the scientific 

principles that will let us create such a ‘distributed brain’ from a collection of devices and information sources. We 

envision the ‘distributed brain’ to be a system that provides a self-organizing self-healing predictive analytics 

capability at the coalition tactical edge, functioning as a whole even when it is isolated from the backend systems, and 

leveraging the backend systems as and when it finds connectivity. 

From an scientific exploration perspective, creating a distributed brain requires that we know how to solve four 

important problems (a) How can the distributed elements of the brain manage themselves on their own in an 

unattended manner [autonomicity problem] (b) how can the distributed elements of the brain learn independently 

when disconnected while share knowledge and make decisions with each other when connected [federated decision 

making problem]; (c) how can the distributed brain protect itself against bad data and malicious data fed to it 

[robustness problem] and (d) how can the distributed brain combines human knowledge with the insights learnt from 

the data it sees in the environment [human-machine federation problem]. 

While there are other problems/algorithms whose need may be uncovered as we do our research, we want to 

focus on these four challenges for the immediate phase of our research. 

To solve the problem of autonomicity, we propose to invent techniques that can automatically allow different 

elements of the brain to learn by themselves the rules and policies that allows them to protect themselves, optimize 

their performance, and avoid faults by observing their state and the environment around them. We assume that each 

element is capable of retrieving shared knowledge through a central knowledge repository (which can be visualized 
as a wiki-how that is the controller of the machines, allowing them to share the rules of autonomy with each other, 

while also providing them with a distributed command and control mechanism. This should result in an approach for 

federated learning of autonomy policies for distributed command and control. 

To solve the problem of federated decision making, we propose an approach where different elements share 

their learning and decision making with each other to improve the end result. We envision each machine to create a 

vector representation of the data they are encountering, a vector representation of their environment, and a vector 

representation of the AI models they have learnt. We also envision them to create a vector representation of the 

collaborative decision they are making. Each element learns and creates an AI model of its own, shares the AI model 

with others in the system (using the vector representations), and figures out how to map their vectors to align with the 

vector representing the overall decision making that has to take place. What we would explore are the different types 

of vector representations that allow an efficient form of learning in a distributed environment. 

To solve the problem of robustness, we propose to study the problem of assigning trust values to models and 

data received from peers and partners in a distributed environment. We would examine the behavior of the peers in 

the distributed node with the data they are sending or receiving, examine the amount of data leakage a partner is 

making through their models  and use that to understand whether they are engaged in adversarial behavior. We would 

also look at the amount of reinforcement of the model’s strength that happens as data flows among different nodes 

and use the positive reinforcement or negative re-enforcement in the network of model and data to understand how 

much trust to place in each specific node. 

To solve the problem of human-machine federation, we propose to explore methods that combine human 

knowledge (e.g. captured in rules or other symbolic learning methods), with data learnt from distributed sources. We 

would create techniques that would use this combination to create new integrated models, create artificial agents 

running off those models, and simulate how those agents would work together with a human to solve a specific 

problem. 

Accordingly, the immediate activities in our research program are: 

• Autonomicity Problem:  
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o Infrastructure Design & Distributed Control for Dynamic Software Defined Coalitions 

o Federated Policy Learning and Management 

• Federated Decision-Making Problem: 

o Distributed Online Learning with Multiple Learners 

o Agile Analytics Enabled by Decentralized Continuous Learning in Coalitions 

o Cognitive Workflows: Goal Directed Distributed Analytics Using Semantic Vector Spaces 

• Robustness Problem: 

o Interpretability of Neural Networks in Distributed & Contested Environments under Incomplete Trust 

o Network intelligence from negative ties 

• Federation of Human and Machine Knowledge: 

o Learning and Inferencing in Neuro-Symbolic Hybrids for Uncertainty-Aware Human-Machine 

Situational Understanding Coherence in Coalitions: understanding internal group behavior and dynamics 

in complex multi-domain environments 

o A Neural-Symbolic Learning of Generative Policies in Coalition Environments 

The remainder of this document contains the detailed description of each of the 4 projects and 10 tasks that 

comprise the BPP20 program.  

 

 

 

 

 



DAIS ITA Biennial Program Plan 2020 

 9 

Project 7: Policy-enabled Dynamic Infrastructure 

 

Project Champion:  Alessandra Russo, Imperial College 

 Email:   a.russo@imperial.ac.uk    Phone: +442075948312 

Primary Research Staff Collaborators 

Liang Ma, IBM US Paul Yu, ARL 

Kin K. Leung, Imperial College Kelvin Marcus, ARL 

Leandros Tassiulas, Yale Sastry Kompella, NRL 

Elisa Bertino, Purdue Jeremy Tucker, DSTL 

Alessandra Russo, Imperial College Gregory Cirincione, ARL 

Seraphin Calo, IBM US John Ingham, DSTL 

Andreas Martens, IBM UK Dinesh Verma, IBM US 

Daniel Cunnington, IBM UK Geeth de Mel, IBM UK 

Yaniv Aspis, Imperial College Mark Law, Imperial College 

Sebastian Stein, Southampton Amani Abu Jabal, Purdue 

Konstantinos Poularakis, Yale Jorge Lobo, Imperial College 

Ankush Singla, Purdue Miguel Rio, UCL 

PhD student, Imperial College  

Joao Reis, UCL  

Fan Bi, Southampton  

Tesfay Gebrekidan, Southampton  

 

Project Summary/Research Issues Addressed 

Coalitions require distributed, dynamic, secure coalition communication/information infrastructures that can 

support distributed analytics to enable situational understanding. Network infrastructures have to be resilient to 

failures and easily configurable to respond efficiently to changes (e.g., fragmentations) and heterogeneity of the 

networks, whilst respecting communication and security constraints. Self-configurable mechanisms need to 

dynamically manage the infrastructure and assets belonging to different parties (or enclaves) in order to respond to 
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changes in the mission needs, context and resource constraints. Managing different types of resources distributed 

across coalition infrastructure requires efficient exchanges of resource status information in various enclaves. Such 

status information exchange is restricted by communication and security constraints as well as network dynamicity.  

Adaptability is also required at the level of access to information, resources and data, and access control policy 

decisions need to automatically adapt to respond to changes in the context. For example, in Software Defined 

Coalitions (SDC) policies are needed to guarantee secure sharing of information among members of different coalition 

parties. Given the dynamicity of SDC infrastructures and resource constraints such policies cannot be predefined. 

SDCs policies need to be learned automatically in response to changes in and fragmentation of the SDC infrastructure, 

and resource availability. The SDC state information is a key contextual information that a policy learner has to take 

into account when learning information sharing policies, together with decisions for SDC control and resource 

management. The open research question is how to enable devices (e.g. SDCs controllers) to operate with minimal 

human intervention in highly dynamic infrastructures whilst maintaining a level of security to guarantee robust 

distributed analytics. 

Whether at the level of network control or information sharing control, advanced policy management systems have 

to support (network) context-dependent adaptability.  In SDC, such systems have to be distributed, able to learn data 

sharing and communication policies in a federated manner, taking into account data and existing security constraints 

from different enclaves in an SDC infrastructure. Because of the dynamicity of SDC infrastructures, resource 

management needs to adapt to respond to network changes (e.g., fragmentation of communication in the network), in 

order to guarantee the fulfillment of SDC network management objectives. Learning approaches, such as deep 

reinforcement learning, are needed to control SDC resources in an adaptive and distributed manner at a fine-grained 

time-scale granularity, to guarantee quick response to network changes and optimization of resources in an SDC 

network infrastructure. But the notion of optimization of resource management may itself depend on the specific 

contextual information, mission tactics, security constraints of the parties involved in an MDO. So, attribute-based 

policies for resource and data management are also needed to determine the best SDC resource management strategy, 

taking into account security constraints, state of the resources and network infrastructure, as well as tactic multi-

domain operations MDO requirements. These policies can be taken into account by the distributed information-

exchange decision process among controllers in an SDC infrastructure when adapting to SDC dynamicity. 

In the BPP18 program, researchers have identified the inadequacy of a single control plane in terms of 

reliability/robustness of coalition networks. This project aims to address this problem by exploring a new architecture 

that allows for primary/backup control planes to respond to network fragmentation as well as delegation of control 

functions from controllers to nodes insides enclaves to handle dynamicity without causing significant network 

communication overheads and complexity. However, to be effective, decisions over network control and resource 

management through exchange of status information among enclaves need to be learned depending on coalition 

objectives and network dynamics for supporting distributed analytics. In BBP18 symbolic learning techniques have 

been developed which learn attribute-based policies from data, structured in a tabular form by combining machine 

learning methods in order to generate policies that are safe generalizations with minimal overfitting. But, in the context 

of SDC infrastructures for MDO, policies need to be learned in a federated manner using combination of owned data 

and data from other coalition parties. This project aims to address the second problem of how to learn SDC control 

and resource management policies that guarantee secure data communication in the context of MDO and highly 

dynamic network infrastructures. 

This project will investigate the above problems in the following two tasks:  

• Infrastructure Design & Distributed Control for Dynamic SDC, which will undertake research in the areas 

of 1) network fragmentation, 2) devolution of controllers to handle extreme network dynamics and 

heterogeneity, 3) distributed multi-agent reinforcement learning (RL) framework for managing SDC 

resources. 

• Federated Policy Learning and Management, which will undertake research in 1) federated approach for 

learning both local and global policies, 2) federated policy management where composition operators for 

policies learned at local parties will be formalised and investigated, and finally 3) explainability of the learned 

policies.  
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Task 7.1: Infrastructure Design and Distributed Control for Dynamic SDC 

 

Primary Research Staff Collaborators 

Liang Ma, IBM US [Task Lead] Paul Yu, ARL 

Kin K. Leung, Imperial College Kelvin Marcus, ARL 

Leandros Tassiulas, Yale Sastry Kompella, NRL 

Andreas Martens, IBM UK  Jeremy Tucker, DSTL 

PhD student, Imperial College Miguel Rio, UCL 

Sebastian Stein, Southampton  

Konstantinos Poularakis, Yale  

Joao Reis, UCL  

Fan Bi, Southampton  

Tesfay Gebrekidan, Southampton  

 

Coalitions require a robust network infrastructure to support distributed analytics tasks that is easy to configure, 

resilient to failures, and agile to coalition policies. Software Defined Coalition (SDC) has been proposed for these 

requirements. Compared to traditional SDN with a single controller, SDC assets belong to different enclaves 

(domains), each managed by its controller; efficient status-information exchanges among controllers are required. 

Furthermore, SDC exhibits high dynamicity, whereas traditional SDN is relatively static. Thus, it is critical for SDC 

to handle dynamicity efficiently; e.g., fast response to fragmentation, controller disconnections, and new policies. 

Moreover, coalition network complexity is compounded by node heterogeneity and asymmetry. Efficient integration 

of network elements running different protocols remains an open issue. Previous DAIS ITA work2,3,4,5 has recognized 

the inadequacy of a single control plane in terms of reliability/robustness for coalitions. To address these issues, we 

plan to investigate a new architecture that seamlessly stitches control mechanisms together to provide robustness and 

efficiency with reduced overheads and complexity. This effort will directly address the unsatisfactory reliability, 

robustness and efficiency of the current SDC control architectures for coalition forces. 

Another major challenge for infrastructure robustness is how to manage resources (e.g., communications, 
computation and learning capability) efficiently. To this end, controllers need to exchange information about resource 

status in various enclaves. Unfortunately, such exchange is restricted by communication/security constraints and 

dynamicity. To overcome these challenges, we propose the embedding techniques from machine learning (e.g., skip-

gram, graph neural networks, etc.) and deep reinforcement learning to control SDC resources in adaptively and 

distributed ways. To resolve the key issue of huge search space for the optimal information-exchange strategy among 

controllers, a promising approach is to embed network states and potential control actions into vectors such that actions 

yielding to similar rewards have similar vector embedding. Using these embedded vectors as input, we aim to develop 

a multi-agent reinforcement-learning framework for distributed information-exchange decisions among controllers. 

Moreover, the framework can be enhanced using incremental learning to adapt to SDC dynamicity. To handle network 

complexity, the framework can also be improved by leveraging neural networks to proactively learn the latent features 

that govern the coalition overall performance. 
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Our work is divided into two inter-dependent subtasks: (7.1.1) Network infrastructure design for dynamic SDC, 

and (7.1.2) Reinforcement-learning-based frameworks for distributed and adaptive SDC control. 

 

Subtask 7.1.1: Network Infrastructure Design for Dynamic SDC 

Handling Network Fragmentation by Primary/Backup Controllers: 

Control plane is fragmented when controller(s) and/or control link(s) fail. Multi-control-planes can improve 

reliability. For example, previous work1 examines co-existence of distributed and centralized control planes. Work in 

DAIS ITA2,3,4,5 proposed reliable architectures where each node dynamically uses one of multiple control planes that 

are constantly updated. Unfortunately, these techniques are not developed specifically for fragmentation. Particularly, 

fragmentation may occur infrequently. Otherwise, one may use link-layer and hardware techniques to make the control 

plane reliable6. Therefore, to handle fragmentation, it is not cost-effective to maintain multi-control-planes constantly 

updated. In fact, our experiments demonstrate that multi-control-planes (e.g., OpenDaylight, ONOS, RYU) cause 

significant synchronization/signaling traffic that increase almost linearly with network size and can be prohibitively 

large for tactical networks3,7. Furthermore, links available as backup (e.g., satellite links) often have a lower data rate 

than regular links for the control plane. We have not adequately explored these factors. 

We aim to propose a new, efficient architecture to mitigate network fragmentation, which has not received much 

attention in DAIS ITA. As in Figure P7-1, each enclave is connected to one primary and one backup controllers. Data 

flows between enclaves of different technologies can be supported by SDC/MANET gateways2. Normally, each 

enclave is controlled by its primary controller. Primary controllers synchronize status information with each other8,9,10 

through links with sufficient bandwidths on the primary control plane. In Figure P7-2, when fragmentation occurs, 

each “disconnected” enclave is switched to be controlled by its backup controller until failures are repaired. Backup 

controllers communicate with each other as well as with operational primary controllers. However, communication 

links (e.g., satellite links) connecting backup controllers may have limited bandwidth and performance. 

 

1 S. Vissicchio, L. Cittadini, O. Bonaventure, G.G. Xie and L. Vanbever, On the Co-Existence of Distributed and Centralized 

Routing Control-Planes, IEEE Infocom, 2015.  

2 K. Poularakis, Q. Qin, E. Nahum, M. Rio, L. Tassiulas, Bringing SDN to the Mobile Edge, DAIS, 2017 

3 Q. Qin, K. Poularakis, G. Iosifidis, S. Kompella, L. Tassiulas, SDN Controller Placement with Delay-Overhead Balancing in 

Wireless Edge Networks, IEEE Transactions on Network and Service Management, vol. 15, no. 4, pp. 1446-1459, 2018. 

4 G. Li, D. Duan, F. Le, K. Gokarslan and Y.R. Yang, Carbide: Highly Reliable Networks Through Real-Time Multiple Control 

Plane Composition, DAIS, 2019. 

5 K. Poularakis, Q. Qin, K.M. Marcus, K.S. Chan, K.K. Leung, L. Tassiulas, Hybrid SDN Control in Mobile Ad Hoc Networks, 

DAIS, 2019. 

6 J. Liu, Y. Shi, L. Zhao, Y. Cao, W. Sun, and N. Kato, Joint Placement of Controllers and Gateways in SDN-enabled 5G-satellite 

Integrated Network, in IEEE Journal on Selected Areas in Communications, vol. 36, no. 2, pp. 221–232, 2018 

7 Q. Qin, K. Poularakis, G. Iosifidis, L. Tassiulas, SDN Controller Placement at the Edge: Optimizing Delay and Overheads, 

IEEE Infocom, 2018. 

8 Z. Zhang, L. Ma, K.K. Leung, F. Le, S. Kompella and L. Tassiulas, How Advantageous Is It? An Analytical Study of 

Controller-Assisted Path Construction in Distributed SDN, IEEE/ACM Transactions on Networking, pp 1-14, doi: 

10.1109/TNET.2019.2924616, July, 2019. 

9 Z. Zhang, L. Ma, K.K. Leung, and Franck Le, “More Is Not Always Better: An Analytical Study of Controller Synchronizations 

in Distributed SDN,” submitted to IEEE JSAC. 

10 K. Poularakis, Q. Qin, L. Ma, S. Kompella, K.K. Leung, L. Tassiulas, "Learning the Optimal Synchronization Rates in 

Distributed SDN Control Architectures," IEEE Infocom, 2019. 
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Figure P7-1: Primary/Backup Controllers for Normal Network Operations 

 

 

 

Figure P7-2: Primary/Backup Controllers for Fragmented Network 

 

We plan to examine the following issues: 

▪ Develop cost-efficient mechanisms for tracking enclave conditions (e.g., link quality, connectivity, node 

mobility, nodes under cyber threat) to determine control switching from the primary controller to the backup 

and vice versa. To consider scalability and correlations among node/link conditions, recent distributed 

learning techniques11 will be extended to track/predict enclave conditions. This can also form the basis for 

“forcing” fragmentation when the predicted condition/performance is poor. 

▪ To reduce switching time, each backup controller should have basic status information about the 

corresponding enclave. However, it is inefficient for the primary controller to update the backup constantly 

with limited bandwidth. Hence, it is important to develop fundamental understanding of when and what status 

information each primary controller should update the backup for good performance. The issue will be 

formulated as POMDP and the multi-agent reinforcement-learning framework in Subtask 7.1.2 can be applied 

here. If this approach remains too complex, the problem will be solved approximately by optimization 

techniques. 

 

It is worth noting that with severe failures, the infrastructure may fragment into an “agglomeration” of groups 

of connected enclaves. In that case, each group continues to function with reduced capabilities. The aforementioned 

issues and solutions for the switching between the primary and backup controllers are applicable to each of these 

 

11 Tiffany Tuor, Shiqiang Wang, Kin K. Leung, and Bongjun Ko, “Online Collection and Forecasting of Time-Series Data in 

Large-Scale Distributed Systems,” IEEE ICDCS, 2019. 
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enclave groups. When the fragmentation causes disappear, groups of enclaves can re-join to become a larger 

infrastructure. 

Handling Extreme Network Dynamics and Heterogeneity through Devolution of Control: 

Besides network fragmentation, other architectural issues exist. First, the primary/backup controllers cannot 

always react to network events as fast as nodes inside enclaves. For instance, it may be impossible for a controller to 

reroute traffic away from a failed path as quickly as the nodes located close to the source of failure. Moreover, 

switching to a backup controller would increase further the reaction time2,5. Second, frequent network events can 

trigger an enormous number of resource-reconfiguration requests, which can paralyze controller operations. Third, 

due to heterogeneity of network equipment, controllers can only indirectly control legacy networks by gateway nodes. 

This results in a degree of uncertainty for the outcome of controller decisions. 

To address these issues, we propose to delegate (or “devolve”) some of control functions from controllers to nodes 

inside enclaves, thus revisiting the principle of centralized control of SDC and moving towards a hybrid architecture5. 

Functions that require very time-critical or privacy-sensitive communication between data and control planes such as 

re-routing information for failed/untrusted paths or locally storing/processing confidential data are candidates for 

running at the nodes. Yet, less time-critical functions and functions with relaxed privacy requirements can still be 

performed by the controllers at a slower timescale. For example, controllers can periodically compute flow rules that 

match against suspicious packets in order to realize a firewall function. At a similarly slow timescale, controllers can 

configure a “network spine” consisting of communication, computing, and storage resources distributed over the 

network for supporting coalition services. Unlike traditional SDN, however, in our hybrid architecture, nodes with the 

devolved control capabilities can focus the resources of this spine to those services that are more critical. These 

decisions will happen at a faster timescale. This way, controllers are off-loaded from the task of making “micro-

reconfigurations” to fully support faster timescale needs (e.g., in msec), thus enhancing SDC scalability and 

performance. 

The faster timescale is driven, in part, by node mobility and wireless channel fluctuations. The mainstream 

approach to handle such dynamics is to use a Mobile Ad-Hoc Network (MANET) protocol (e.g., OLSR, AODV, etc.), 

which can provide multi-hop connectivity and allocate resources in a distributed and reconfigurable manner. However, 

existing MANET protocols focus primarily on communication rather than storage and computation resources and are 

not designed to support for tactical operations. With the back-end support of controllers in our hybrid architecture, we 

can overcome these limitations of existing protocols. For example, controllers can selectively announce the list of 

stored data items and/or suspicious nodes to other nodes. With this information passed by the controllers, nodes can 

make more intelligent, secure, and data-aware, resource-allocation decisions. We plan to investigate efficient 

mechanisms for such message passing from controllers to nodes. Techniques that tag packets at the source nodes with 

encoded routing-path information to affect the decisions of the distributed protocol, such as those in our preliminary 

work5, will serve as a starting point of this investigation. 

 

Subtask 7.1.2: Distributed and Adaptive SDC Control and Management 

High dynamicity and heterogeneity of SDC impose paramount challenges to resource control/management. Here, 

we propose to employ learning approaches to proactively learn the underlying principles and adapt to network changes. 

Our DAIS-ITA works12,13,15 have shown the effectiveness of using reinforcement learning (RL) for network 

resource management. The key advantage of RL is that it does not require the prior knowledge of the environment’s 

dynamics yet can still achieve an adaptive and optimal solution over time. Most existing RL work requires a central 

entity for collecting network states and computing the optimal information-exchange policy for (enclave) controllers. 

In battlefields, however, it is preferable if controllers individually decide how to exchange information for resilience 

and robustness. To this end, we investigate a distributed multi-agent RL framework for managing SDC resources. 

Depending on coalition objectives, network states can be service load level, resource utilization, etc. The high-level 

goal is to let each agent (e.g., controller) decide when and what information to exchange (a.k.a. actions) with other 

 

12 Z. Zhang, L. Ma, K. Leung, L. Tassiulas, and J. Tucker, “Q-placement: Reinforcement-Learning-Based Service Placement in 

Software-Defined Networks,” IEEE ICDCS, 2018. 

13 Z. Zhang, L. Ma, K. Poularakis, K. Leung, and L. Wu "DQ Scheduler: Deep Reinforcement Learning Based Controller 

Synchronization in Distributed SDN," IEEE ICC, 2019. (Best paper award). 
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controllers under typical network constraints (e.g., amount of control messages). Such problem is extremely 

challenging because of exponentially many network state-action combinations and unobservable network states due 

to communication/protocol issues. Furthermore, SDC dynamicity may change over time, thus complicating the 

learning process. 

We address these challenges by first leveraging the embedding techniques in machine learning. This is because 

efficient embedding can provide low-dimensional representations of network states and candidate actions, which will 

ease the training process. Moreover, in existing RL work, network states and actions are generally represented by 

integers or “1-hot” vectors, which cannot capture the intrinsic relations among them. We therefore target to embed 

each state s and its available actions {a1,a2,…,an} into vectors such that ||s⨁a1|| ≈ ||s⨁a2|| if two actions a1 and a2 

produce similar reward w.r.t. state s, where ⨁ is an operator14 indicating how s and ai are related and the norm 

operation ||.|| is used to evaluate the goodness of a particular action. We plan to employ neural networks to train the 

relations between states and actions using their corresponding rewards and output the hidden-layer weights as the 

state/action vector embedding (i.e., as in skip-grams15 16 for word/node embedding). Consequently, given a state s, we 

can reduce the search space for the best actions revealed by the vector representations. 

Based on these vector representations, we next develop an efficient multi-agent RL framework. For dynamic SDC, 

the current states may be unobservable, thus yielding a POMDP problem. For POMDP problems, traditional 

approaches leverage statistical approaches to compute the belief vectors under Markovian assumptions, which, 

however, may not be valid for SDC. Therefore, we propose to employ LSTM (long-short term memory) to predict the 

current network states using past data. Our initial results demonstrate high prediction accuracy of the LSTM-based 

approach even if the dynamic environment is completely unknown. In this way, the unobservable state problem is 

converted into a “predictable” state problem, thus easing the learning process for each agent. In addition, we also 

target on theoretical analysis, aiming to obtain a deep, fundamental understanding as to under what conditions the 

distributed framework approaches the centralized solution (i.e., only one agent). With such insight, we study how to 

improve the RL performance when these conditions are not satisfied. Furthermore, training time is crucial for dynamic 

SDC. To reduce training time, we have built MACS (Multi-Armed Cooperative Synchronization)17 for a centralized 

single-agent RL problem. In MACS, each arm is used to compute the value function for the associated action 

dimension; then the final optimal action is obtained by merging the suggested sub-actions from each arm. For multi-

agent RL in dynamic SDC, we propose to extend MACS to tackle distributed problems for military networks. 

Additionally, network dynamicity changes over time, for which we plan to use incremental learning to enhance 

our multi-agent RL framework. Specifically, using the newly available data, we continuously train the framework so 

that it adapts to new data, while retaining the existing knowledge. This capability can help us handle time-varying 

dynamicity without re-training the model for dynamic SDC. 

The above RL framework using vector representations and deep neural networks is also critical to Task 7.2 for 

federated policy learning and management, due to the generality of the proposed research method for proper 

state/action representation and multi-agent learning. In addition, as Task 7.1 provides a substrate for efficient policy 

learning in Task 7.2, we also plan to investigate joint reinforcement learning between Task 7.1 and Task 7.2 to improve 

the overall performance of the learning framework. 

Task 7.2: Federated Policy Learning and Management  

Primary Research Staff Collaborators 

 

14 One canonical embodiment of ⨁ is the vector element-wise sum. We investigate how different operators affect the 

performance of the reinforcement-learning framework. 

15 S. Rallapalli, L. Ma, M. Srivatsa, A. Swami, H. Kwon, G. Bent, and C. Simpkin, SENSE: Semantically Enhanced Node 

Sequence Embedding, submitted to CIKM, 2019. 

16 [BigData19] 

17 Z. Zhang, L. Ma, K. Poularakis, K. Leung, J. Tucker, and A. Swami, “MACS: Deep Reinforcement Learning based SDN 

Controller Synchronization Policy Design,” IEEE ICNP, 2019. 
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mechanisms by which parties can combine their own local policies (either directly defined by each such party or 

generated by the two-layer learning process). The mechanism we plan to investigate is based on the definition of a set 

of algebraic operators for policy compositions; examples of such operators include intersection, union, negation, 

domain projection. The latter takes a policy and restricts it to be used only for a set of requests (usually a subset of the 

requests for which the policy was initially specified). Those operators will typically have the closure property and thus 

can be combined into policy combination (PC) expressions that will be formally defined and for which algebraic 

properties will be studied.  Additional derived operators will be defined such as the precedence operators that given 

two policies establishes which is the decision/recommendation of one policy has precedence over the other. By using 

such operators one can provide expressions to deal with conflicts. A semantics will also be defined on the view that a 

policy can be considered as a function mapping each policy request to a value in the set of possible policy 

decisions/recommendations.  

To deal with conflicts it is important that the elements in such a set be adequately described through an ontology, 

indicating for example sub-sumption relationships, conflict relationships, and complementarity relationships. We will 

identify all required relationships and create a simple ontological system by which these decisions/recommendations 

can be entered into the policy federated management system to be then used in the specification and analysis of PC 

expressions. For example, consider an example of information sharing decision concerning the sharing of a resource 

of type T, owned by UK, with partner Kish and suppose that there is policy P1 specifying  that resources of type T can 

be shared with Kisch; the policy could be expressed as “Resource Type = T and Requestor = Kisch, then Share”, where 

Share is the decision recommended by the policy of UK. On the other hand, suppose that U.S. has the policy “Resource 

Type = T and Requestor =Kisch, then NotShare” where “NotShare” is the decision recommended by US. Now suppose 

that UK and US have a shared resource of type T, then it is clear that the two policies conflict. However for an 

automated system to determine  that “Share” and “NotShare” are conflicting policy recommendation, one would need 

to indicate in an ontology, where each node represents a decision, that nodes “Share” and “NotShare” are related by 

the conflict relationship, and indicate the corresponding conflict resolution, for example that “NotShare” prevails over 

“Share”. Also, the prevalence relationship can be represented in the ontology. Then based on this information, the 

policy management system can automatically generate the appropriate PC expressions that comply with the conflict 

resolution indicated in the ontology. As another example, assume that UK has the policy that each primary controller 

in an SDC must be backed up by two secondary controllers hosted on different servers, whereas US has the policy 

that each primary controller in an SDC must be backed up by only one secondary controller. Suppose now that UK 

and US have a controller to be used for a joint mission and thus, they have to agree on a backup policy. In this case 

the former policy (i.e., backing up on two controllers) “subsumes” the latter (i.e., backing up on one controller). Even 

though this is not strictly a conflict, it is critical to decide the policy to use. In this case, one can specify that these two 

policies have a sub-sumption relationship and that the policy to be adopted is the one that subsumes the other and thus 

the joint policy would be to back up the primary controller on two secondary ones. In addition, as part of this activity 

we will investigate policy adaptation to different contexts by developing a notion of “policy transferability” and 

leveraging our past work in BBP18 on learning Answer Set Grammars. 

Subtask 7.2.4: Explainability of Policy Learning 

Providing explanations about which policies are learned by a system like Polisma is a challenging task because 

policies are learned according to several steps and using different data. Also, explanations may take different forms, 

depending on the user preferences. We will explore two complementary mechanisms. The first mechanism is the 

policy provenance which, like a data provenance mechanism, keeps track of all relevant information concerning the 

lifecycle of a given policy. The provenance information for a policy may include: training datasets from which the 

policy was learned, context information used for generalizing the policy, learning algorithms used in the policy 

learning process and all relevant parameters for these algorithms, human actions executed on the policy (e.g., manually 

removing/adding rules to the policy).  The second mechanism is a query mechanism supporting different types of 

explanation based on the information acquired by the policy provenance mechanism. One interesting type of 

explanation is based on the counterfactual explanation25 that has been suggested in different contexts, such as for 

example to support the “right to explanation” in the General Data Protection Regulation (GDPR) of the EU. An 

example of a counterfactual explanation is the statement “You were denied a loan because your annual income was 

$40,000. If your income had been $45,000, you would have been offered a loan”. As counter-factual explanations are 

considered to be quite effective in communicating with human users, these approaches are being investigated in 

 

25 S. Wachter, B. Mittelstadt, and C. Russell. Counterfactual explanations without opening the black box: Automated decisions 

and the GDPR.  Harward Journal of Law & Technology, vol. 31, no. 2, Feb. 2018. 
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different domain (see26 for examples). We will explore such an approach and combine it with other approaches for 

explanation of AI systems27. 

Validation and Experimentation 

With the renewed focus on Multi-Domain Operations (MDO) this research has become highly relevant, the 

algorithms created in this project will aid multiple domains and coalition partners to interoperate in more seamless 

manner with heterogeneous infrastructure and support distributed analytics whilst respecting communication and 

security constraints. The proposed methods in both tasks will make use of learning approaches. These techniques will 

need to be validated to demonstrate the accuracy of their predictions in different SDC scenarios.  

In Task 7.1, we will validate the proposed ML approaches by using multiple, similar “vignettes”, some of which 

will be used for training and some for testing. The scenarios will include SDC networks in tactical environments that 

make used of both network and mobile connections. An example of such scenario will be the Anglova scenario. For 

demonstration purposes we will use containers to allow algorithms to run on a more lightweight platform such as our 

testbed of wirelessly-interconnected mobile handheld devices (Android) empowered with SDN control functions we 

have developed and experimented with in our previous DAIS works3,5,7. Commercial exploitation of our testbed will 

be explored to enable an efficient and highly manageable mobile network infrastructure for dynamic sharing of 

infrastructure resources among semi-autonomous mobile devices and efficient service delivery. 

We will also develop example data to traverse the emulated network. This data may vary according to the vignettes 

used:  

1. Troop deployment – Situational awareness and chat  

2. “Kinetic” – Situational awareness and PTT/ROIP  

3. Medical Training + medical procedure – Significant data transfers over backhaul that have  

 low priority in training, but high priority when performed for real.  

4. “down-time” – Sharepoint traffic, VOIP traffic, and others.  

We plan to use these data first in smaller network simulation, e.g., mininet, for quicker validation and then use 

them on a full-scale validation using EMANE.  

Validation of the system needs to compare new capabilities against what’s already available:  

1. Basic network reachability end-to-end against: 

a. MANET routing, e.g., OLSR 

b. Current SDN, e.g., ONOS, ODL, or Ryu 

c. Theoretical maximum assuming perfect knowledge and instant convergence  

2. Resource availability to end nodes against:  

1. Theoretical maximum  

2. Bandwidth consumed  

 We will also conduct experiments using the scenarios and data considered by the distributed analytic Tasks 8.2 

and 8.3 in project 8.  

In Task 7.2, our approach to policy generation is also data-driven we will carry out a variety of experiments to 

validate the accuracy and effectiveness of our approach. These experiments will be conducted on real-world data (e.g. 

the Amazon datasets, and other publicly available datasets) and data from Task 7.1. Based on the policies relevant for 

dynamic SDC and data from Task 7.1, we will assess whether our policy learning approaches is able learn the correct 

policies. We will also, based on scenarios from Task 7.1, determine score functions to be used by FastLAS in order 

to learn policies that correctly take into account SDC requirements, and investigate our policy adaptation techniques 

to different contexts. 

 

26 A. Dhurandhar, P.-Y. Chen, R. Luss, C.-C. Tu, P.-S. Ting, K. Shanmugam, and P. Das. Explanations based on the missing: 

Towards contrastive explanations with pertinent negatives. NeurIPS 2018. 

27 R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi. A survey of methods for explaining black box 

models. ACM Computing Survey, 2018. 
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We will evaluate our approaches for learning and managing policies under different metrics, including accuracy, 

completeness, and robustness in adapting to context changes and will measure their efficiency in terms of 

computational time. We also evaluate the approaches with respect to usability from the human user point of view. 

Such evaluation will allow us to determine the type and amount input required from human users and to assess the 

effectiveness of the policy generation explanations. We will develop a simulation testbed consisting of different agents 

to showcase to analyze our algorithms with coalitions of different scales. Finally, we will develop scenarios based on 

the military vignettes, developed at the beginning of the current BPP, and use them in the simulations. 

Military and DAIS ITA Relevance 

With the renewed focus on Multi-Domain Operations (MDO) this research has become highly relevant. The 

algorithms created in this project will aid multiple domains and coalition partners to interoperate in a more seamless 

manner with heterogeneous infrastructure and learn coalition policies using data available at coalition partners.  

The relevance of this work is further reinforced by the work done within the NATO FMN (Federated Mission 

Networking) by the ACT (Allied Command Transformation) in the in following two focus areas of the TIDE (Think-

Tank for Information, Decision and Execution Superiority) program:  

1. Protected Core Networking: This Focus Area aims at creating a standard network interoperability layer 

between coalitions, mainly at the Deployed layer. At the moment it is focused on networking only, but the 

work here can influence future “spirals” to allow for better coalition interoperability both at a fine-grained 

level of control of the network infrastructure and at a more coarse-grained level of coalition distributed 

intelligence. 

2. Tactical Edge: This Focus Area is aimed at creating a method of interworking at the highly mobile tactical 

edge where PCN is too heavyweight. The importance here is to allow for a distributed control between 

coalition partners where a coalition enclave might fragment and be linked by another coalition partner whilst 

still ensuring secure communications.  

The proposed federated policy learning and management framework will also address the MDO coalition needs 

for dynamically generating coalition policies that ensure secure resource sharing in coalition distributed intelligence. 

We address this challenge by automatically learning coalition policies in a highly dynamic network infrastructure, 

using the data available at the coalition partners, whilst ensuring accuracy of the policy learning outcome. The learned 

policies can then be used to guide coalition tactical decisions. Correct and complete policies are therefore critical for 

enhancing multi-domain coalition operations when policies need to be generated in a highly dynamic environment 

with many parties. The proposed federated policy management approach will address this challenge and will enhance 

autonomous management of coalition infrastructures, thus reducing cognitive load on warfighters in the tactical edge. 

The planned demonstration will show the functionalities created from this project at the level of control and 

management of MDO network infrastructures and learned network infrastructure policies in response to dynamic 

changes. This demo can be demonstrated at NATO CWIX (Coalition Warrior Interoperability eXploration / 

eXperimentation / eXamination / eXercise), as previous ITA work has been demonstrated at past CWIX events under 

transition contracts. Results may also have potential impact into the NATO STO IST-161 which is looking at the 

Group and Information Centric communications at the Tactical Edge.  

Scientific risk of our proposed federated policy learning method is the scalability. Although effective in generating 

policies that are human-interpretable, the symbolic learners may, in their current form, not be applicable to very large 

datasets. This risk will be mitigated by (i) using where possible association rule learning algorithms – widely used in 

many applications – to increase scalability at the cost of generality of the policies learned, and (ii) focusing on learning 

more coarse-grained types of policies that complement fine-grained policies for network infrastructure management 

and control generated by multi-agent reinforcement learning methods.  

We envisage several potential transitions both within and outside DAIS. Developing a federated policy learning 

and management capability enables additional transition opportunities that could support future coalition operations. 

For example, within the Human Machine Teaming (HMT) scenario, future coalition forces will be required to operate 

in a mixed-autonomy environment where different entities (human or machine) must collaborate effectively. 

Developing a federated policy learner that is both distributed and capable of expressing learned policy models in 

human readable language will enable rapid integration of mixed-autonomy systems. This will also apply to Multi 

Domain Operations (MDO) where systems containing different policy sets must interact. 
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Also, during operations such as logistical resupply or person of interest tracking, the coalition may be required to 

integrate with external sensors and networks, such as a local CCTV camera network that have privacy restrictions. A 

federated policy learning system would not only enable rapid integration but would also ensure privacy over the raw 

data as this can remain at the edge of the network. 

Collaborations, Staff Roles, and Linkages 

We plan to conduct collaborative work between Tasks 7.1 and 7.2, in particular on the use of the federated policy 

learning for learning course-grained (AB) policies on data communication within the context of SDC while fine-

grained mechanisms for control and resource management decisions are learned through the proposed multi-agent 

reinforcement learning. As indicated in the milestones table, this collaborative work will be demonstrated through a 

joint demo in Q6 of the project with the objective to show the effectiveness and complementarity of the two learning 

frameworks. 

In terms of intra-Alliance collaboration, Task 7.1 is highly related to Task 8.2. We shall explore synergies between 

resource management using reinforcement-learning techniques, propose in Task 7.1, and algorithmic approaches for 

dynamic resource allocation that will be developed in Task 8.2. The new properties of continuous learning techniques 

investigated in this latter task will also shed helpful insights in the way in which we can allow incremental learning in 

our multi-agent methods. 

As we plan also to develop a framework for federated learning of policies that will integrate different forms of 

symbolic and statistical machine learning, the work in Task 7.2 of this project will be highly related to Task 10.3 in 

project P10. The seamless combination of neural and symbolic machine learning developed in this latter task will 

constitute a valuable component in our proposed federated learning framework, in particular when policies for 

coalition tasks need to be learned from (MDO) data that are not tabular. The federated nature of the framework 

developed in Task 7.2 of this project will also shed insights on how to develop federated neural-symbolic learning 

algorithms in Task 10.3 of P10. 

Staff Roles 

Project P7 has a total of 6 PhD students, 4 allocated to Task 7.1 and 2 to Task 7.2. Of the 4 PhD students allocated 

to Task 1, 3 are carried forwarded by the previous BBP18 program.  

• Fan Bi will be focusing, in Task 7.1, on extending initial work on combining reinforcement learning with 

mechanism design28 to the SDC setting by replacing the current reinforcement learning method with linear 

function approximation with the new deep reinforcement learning techniques developed in Task 7.1. He will 

also focus on extending initial work on applying mechanism design to coalition setting29 to the context of 

SDC in order to incentivise truthful reporting of importance of resources. To make our approach suitable for 

SDCs we will address its scalability by developing novel polynomial-time algorithms that still preserve the 

incentive properties.  

• Tesfay Gebrekidan will also contribute to the work in Task 7.1, by looking at techniques for detecting and 

dealing with concept drift and catastrophic changes in the environment (this may occur, for example, as 

resources are added or removed from the system, as the network becomes fragmented or as entirely new 

enclaves become available). In these cases, a controller may need to discard some of its existing knowledge 

and either learn from scratch or employ transfer learning techniques to quickly find new effective policies 

based on prior knowledge. One technique we will explore will be to store a collection of past policies and 

quickly select and adapt these based on the current network conditions. Dealing with such dynamism is 

particularly challenging in the multi-agent setting we consider here, where many agents may simultaneously 

need to re-learn their policies when catastrophic changes occur. 

• Joao Reis will be working, in collaboration with Dr Sebastian Sein, on data-driven neural routing in tactical 

environments, control plane decisions of an SDC will be determined using a deep neural network approach 

rather than traditional SDN synchronisation techniques. In a more service-oriented approach to networking 

 

28 S. Stein, I.A. Moisoiu, M. Ochal, E. Gerding, R. Ganti, T. He, T. La Porta, Strategyproof Reinforcement Learning for Online 

Resource Allocation. Submitted to AAAI 2020 (currently under review). 

29 F. Bi, S. Stein, E. Gerding, N. Jennings, T. and La Porta, A truthful online mechanism for resource allocation in fog 

computing. PRICAI 2019: Trends in Artificial Intelligence (pp. 363-376). 
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simple algorithms such as minimizing statically defined weights to find the shortest network path, are no 

longer appropriate. Determine optimal routing by using optimization approaches based on multiple metrics 

is an NP hard for which classical optimization methods would take a long time to converge even for small-

scale scenarios. A two-fold solution will be developed: (i) use of a machine learning (ML) approach to mimic 

optimal, multi-objective routing, without needing explicit human-engineered heuristic-based algorithms, and 

(ii) use reinforcement learning (RL) to continuously tune the algorithm's model to meet the objectives of 

maximizing utility within coalition-partner-defined constraints. The second aspect will also relate to the 

multi-agent reinforcement learning approach developed in Task 7.1 but with focus on routings decisions 

rather than resource allocation.   

We will seek to ensure that our students will continue working closely together across the two tasks and with 

students on other BPP projects as part of the student cohort. They will participate in periodical conference calls and 

have mutual visits to ensure steady progress of our research. They will be encouraged to spend time at the different 

partner institutions during the project and we will investigate opportunities for students to spend time at the IBM 

Research facilities in both UK and USA.  

During the project, we will identify opportunities for collaborative work between team members which will expand 

on the work described in each respective tasks and leverage upon each other’s expertise. Specifically:  

• Dr Liang Ma will lead the research activity in Task 7.1, focusing in particular on developing efficient 

algorithms and frameworks with other team members for the distributed and adaptive SDC control and 

management using deep neural network and reinforcement learning approaches (subtask 7.1.2). He will also 

work with the government collaborators on the associated experimentation and transition opportunities.  

• Prof. Kin K. Leung and his team will focus on the development of new SDC architecture and control 

algorithms to handle network fragmentation (Subtask 7.1.1). His team will also participate in the investigation 

of multi-agent learning techniques for resource management in SDC (Subtask 7.1.2). These two aspects of 

work will be performed jointly among Imperial College, IBM US and Yale. Kin will work with DSTL and 

UK industrial partners, including IBM UK, for experimentation and transition opportunities.  

• Prof Leandros Tassiulas and his team will bring the expertise network management and will focus on the 

development of the notion of multiple control modalities to match the volatility of wireless networks in the 

operational theatre as well as subsequent failures and fragmentation. He will work closely with the rest of the 

team on the learning approaches that are developed in Subtask 7.1.2 so the novel architecture with multiple 
modalities is fully integrated in the intelligent network framework.  

• Prof. Elisa Bertino, from Purdue University, will bring her expertise in policy-based computer security and 

attribute-based access control policies, and analytics for edge computing. She will therefore be leading the 

research in Task 7.2 and in particular lead the work on designing the new framework for federated policy 

learning and management. 

• Prof. Alessandra Russo from Imperial College will bring her expertise in symbolic machine learning as well 

as in formal reasoning and explanation. She will work in close collaboration with Purdue University, IBM 

US and IBM UK.  

• Dr. Seraphin Calo (IBM US) and Daniel Cunnington (IBM UK) will bring their expertise on systems for 

policy management, use of AI/ML and analytics in systems management and applications of generative 

policies.  

• Andreas Martens will bring his expertise on the development of experimentations and validations scenarios 

across the project. In collaboration with Daniel Cunnington, he will work on identifying candidates for further 

transition and military use. They will jointly work with DSTL colleagues to ensure that emulations of the 

networks with data communications policies are a close match to future capabilities to ensure that the 

validation gives accurate results. 

• ARL and DSTL collaborators will be collaborating with team members in the project, provide their military 

domain expertise from U.S. and UK side respectively, provide input during the validation and 

experimentation phases to guarantee that our developed emulations of policy-enabled dynamic 

infrastructures are a close match to future capabilities and that the validation gives accurate results. ARL and 

DSTL collaborators will also help identifying opportunities for transitions to the two countries respectively. 
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Research Milestones 

Due Task Description 

Q1 Task 1 

• Initial ideas and results of tracking mechanisms of enclave condition 

and performance for the fragmentation architecture (Imperial/IBM 

US/Yale). 

• Deliverable: Presentation slides or short conference paper 

Q1 Task 2 

• Techniques for Federated Policy Learning and Local Policy 

Refinement. 

• Deliverable: Scientific paper on the two-layer policy learner and its 

experimental evaluation. 

Q2 Task 1 

• Design of hybrid cost-efficient/low-overhead architecture for 

devolution of control to nodes inside enclaves (Yale/IBM 

US/Imperial/IBM UK). 

• Embedding strategies for the states and actions in the SDC control 

and management problem, aiming to improve the model training 

time (Imperial/IBM US/Yale). 

• Deliverable: Conference paper submissions. Two papers will be led 

by UCL on (a) deep neural network techniques for control plan 

management in SDC, (b) two-fold solutions for optimal routing. 

Q2 Task 2 

• Techniques for Learning High-Order Policies. 

• Deliverable: Scientific paper on theoretical and experimental 

results about symbolic learners for policy learning and approaches 

for application-dependent solutions scoring. 

Q3 Task 1 

• Detailed control tracking mechanisms for the fragmentation 

architecture (Imperial/IBM US/Yale). 

• Based on the state/action embeddings, develop efficient control 

policies in SDC using different learning approaches (IBM 

US/Imperial/Yale/IBM UK). 

• Deliverables: (1) Conference paper submission(s) and (2) E&V: 

AFM demo based on Anglova with added “vignettes” showing 

different types of data transfer. 

Q3 Task 2 

• Techniques for Federated Policy Management. 

• Deliverables: (1) Scientific paper on theoretical and experimental 

results about the policy composition algebra and ontology design. 

(2) E&V: A demo showcasing some functions of the two-layer 

policy learning tool and the techniques for learning high-order 

policies. 

Q4 Task 1 

• Detailed mechanisms for dynamic/fine-grained devolution of 

control to nodes inside enclaves (Yale/IBM US/Imperial/IBM UK). 

• Formulation of status synchronization mechanisms between primary 

and backup controllers to tradeoff performance and complexity for 

the fragmentation architecture; Exploration of possible 

experimentation and prototype (Imperial/IBM US/Yale/IBM UK). 

• A truthful mechanism for adaptive SDC control. 

• Deliverable: Conference paper submission(s), paper in AI journal 
(e.g., JAIR, AIJ, JAAMAS) lead by Southampton on truthful 

mechanism design in dynamic SDC settings. 

Q4 Task 2 • Explanation Techniques for Policy Generation. 
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Research Milestones 

Due Task Description 

• Deliverable: Scientific paper reporting the architecture of the policy 

lineage system and the design of the explanation query mechanism. 

Results of an end user evaluation will also be included. 

Q5 Task 1 

• Incremental learning methods that are specifically designed for the 

highly dynamic SDC scenario (IBM US/Imperial/Yale). 

• Deliverable: Conference paper submission. 

Q5 Task 2 

• Design of an Integrated System for Federated Learning and 

Management. 

• Deliverable: Report on the system architecture and analysis of 

system deployment approaches in coalition settings, including 

coalition edge computing settings. 

Q6 Task 1 

• Detailed synchronization mechanisms between primary and backup 

controllers and tradeoff results of performance vs. complexity for 

the fragmentation architecture (Imperial/IBM US/Yale). 

• Multi-agent reinforcement learning algorithms that are robust to 

concept drift and catastrophic changes. 

Joint integrated Demonstration between Task 7.1 and Task 7.2 

(Imperial/IBM). 

• Deliverables: Paper at AAAI/IJCAI/AAMAS (Southampton) or 

similar conference on dealing with catastrophic changes in 

cooperative multi-agent reinforcement learning settings. 

• Demonstration policy-enabled SDC in military scenario. 

Q6 Task 2 

• Joint integrated Demonstration between Task 7.1 and Task 7.2 

(Imperial/IBM). 

• Deliverable: Demonstration policy-enabled SDC in military 

scenario. 

 

 

 

 

 



DAIS ITA Biennial Program Plan 2020 

 27 

Project 8:  Federated Learning for Coalition Analytics 

 

Project Champion:  Shiqiang Wang, IBM US 

 Email:  wangshiq@us.ibm.com     Phone: +1-914-945-1772 

Primary Research Staff Collaborators 

Caroline Rublein (PGR), PSU Ananthram Swami, ARL 

Chris Simpkin (PGR), Cardiff Changchang Liu, IBM US 

Don Towsley, UMass Dave Conway-Jones, IBM UK 

Graham Bent, IBM UK  Douglas Summers-Stay, ARL  

Hanlin Lu (PGR), PSU Geeth De Mel, IBM UK 

Ian Taylor, Cardiff Gerard Rinkus, Purdue  

Kaushik Roy, Purdue  Hannah Richardson, Dstl 
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Project Summary/Research Issues Addressed 

Future military operations will greatly benefit from distributed analytics services available at the tactical edge. 

Such analytics services encompass a variety of classification and inference tasks, with examples including classifying 

groups as friend or foe, identifying improvised explosive devices (IEDs), etc. As shown in Figure P8-1, these analytics 

applications will collect multiple types of mission-related data from various sources, ranging from the physical 

environment (e.g., sensor measurements, images captured by cameras) to the operational infrastructure (e.g., 

bandwidth and topological characteristics of the networked system). The challenges of enabling distributed analytics 

in coalition environments include: 1) data that are necessary for analytics applications may not be shareable across 

coalition boundaries due to intermittent network connection, communication bandwidth limitation, and privacy 

concerns; 2) it is difficult to describe analytics services from different coalition members using a single language and 

optimize these services for the best performance towards the overall goal of the coalition. 

In Project 8, we address the above challenges and develop technologies for enabling distributed analytics in 

military coalitions. Our focus includes how to learn the best actions in dynamic coalition networks in an online and 

federated manner with limited information exchange across coalition boundaries, as well as how to utilize 

resources/services across the coalition to perform the required analytics tasks. This project aligns with the ultimate 

goal of DAIS ITA is to investigate the basic science that will enable the creation of a distributed cognitive computer 

system (or distributed brain30) that can perform analytics on demand across heterogeneous networks of interconnected 

devices in a military coalition setting operating in synergy with human users providing understanding of dynamic and 

complex situations involving multiple actors. 

 

30 D. Verma, G. Bent, and I. Taylor, “Towards a distributed federated brain architecture using cognitive iot devices,” in 9th 

International Conference on Advanced Cognitive Technologies and Applications (COGNITIVE 17), 2017. 
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Figure P8-1: Distributed analytics for processing data from dispersed sources. 

 

The project is divided into three tasks: 

• In Task 8.1, the goal is to develop distributed online learning algorithms for multiple learners with 

performance guarantees, understand how software defined coalition (SDC) resource allocation and dynamics 

affect such algorithms, and develop efficient and robust learner placement and communication-resource 

allocation algorithms. 

• In Task 8.2, we focus on decentralized continuous learning where the goal is to perform a joint analytics task 

involving members across coalition boundaries without the need of sharing sensitive information (such as 

raw data). We develop fundamental characterization and algorithms for adaptively updating the analytics in 
decentralized, dynamic, and uncertain coalition environments. 

• In Task 8.3, the goal is to extend the work undertaken in BPP '18 into the construction of distributed cognitive 

workflows, i.e., distributed workflows that are dynamically created to meet a target goal/intent. The key idea 

is to construct vectors from a semantic vector space that captures characteristics of services and workflows 

in a coalition (e.g., obtained via neural embedding such as Word2Vec or Graph/Node2Vec). In principle, this 

allows one to embed knowledge graphs into a vector embedding. 

Task 8.1: Distributed Online Learning with Multiple Learners 
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Data used for distributed analytics in military coalitions may come in streams, and each datum must be quickly 

reacted to when received.  Online learning addresses such streaming data problems. 

The problem of machine learning in a centralized environment, where all data is collected in advance and is 

available to a single learner is well-studied.  However, tactical military coalition settings present new challenges.  In 

the tactical setting there may be multiple uncoordinated data streams generated at different locations, partially 

restricted per coalition policies, and impossible to collect at a single site due to lack of resources.  Moreover, different 

software defined coalitions (SDCs) may want to perform multiple different tasks and each such task can be further 

complicated by the dynamics of the environment in the form of bandwidth fluctuations, and sensors and processors 

going up and down.  Hence, the goal of this research is to develop algorithms for multiple learners processing multiple 

simultaneous data streams for multiple tasks in a constrained coalition environment.  More precisely this research 

includes the following goals: 

1. Develop distributed online learning algorithms for multiple learners with performance guarantees. 

2. Understand how SDC resource allocation and dynamics affect such algorithms. 

3. Develop learner placement and communication-resource allocation algorithms, and other techniques for 

making online learning robust to failures, time varying resources, as well as adversarial manipulation of data 

streams. 

Our proposed research falls into three threads. The first regards distributed online learning in a coalition 

environment in the absence of resource constraints. The second accounts for, possibly, time-varying resource 

constraints, while the third focuses on robustifying online learning through learner placement and communication 

resource allocation. 

 

Subtask 8.1.1: Distributed online learning 

We present our vision for distributed online learning in a coalition environment. We begin with a single learner 

model and then describe extension(s) to a novel multi-learner scenario. 

Single Learner Model: Consider an online algorithm whose goal is to learn a linear function31 in an 

adversarial setting.  The algorithm sequentially receives data (𝑥1, 𝑦1 ), … , (𝑥𝑇 , 𝑦𝑇  ). The goal is to learn a hypothesis 

vector 𝑤 such that given an observation 𝑥, 𝑦 is predicted by �̂� = 𝑤 ⋅ 𝑥. One approach to quantifying performance is 

to make statistical assumptions on the data and then prove a convergence rate. By contrast, we model the learning 

problem as a game, without statistical assumptions on the data. At first glance, it seems impossible to prove 

performance guarantees without assumptions on the data. For example, consider an intelligent adversary with 

knowledge of the learning algorithm who can corrupt the data stream arbitrarily. The adversary can force any 

algorithm to perform arbitrarily bad. However, if the adversary can only corrupt a limited number of data points, or 

alternately the data is subjected to minor statistical noise, the regret model in online learning can provide nontrivial 

guarantees32, 33. 

At time 𝑡 = 1, … , 𝑇, the learner receives example 𝑥𝑡 ∈ ℜ𝑛 and then predicts �̂�𝑡 incurring loss (�̂�𝑡 − 𝑦𝑡  )2. The 

goal is to predict with minimal loss. However, given that data may be generated by an adversary, our aim is instead to 

predict with small regret. That is, to guarantee that the learner incurs small loss if there exists some linear predictor 

with small loss and low complexity.   

Formally, we wish to prove   

 

31 For simplicity and compactness of notation in our presentation we restrict ourselves to linear models, and square loss.  More 

generally we will extend to nonlinear functions as well as strongly convex loss functions. 

32 Cesa-Bianchi, Nicolò and Gábor Lugosi. “Prediction, learning, and games.” (2006). 

33 Herbster, Mark and Manfred K. Warmuth. “Tracking the Best Linear Predictor.” Journal of Machine Learning Research 1 

(2001): 281-309. 
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𝑅(𝑇, 𝑢) =  ∑(𝑦𝑡 − �̂�𝑡)2 − ∑(𝑦𝑡 − 𝑢 ∙ 𝑥𝑡)2 

𝑇

𝑡=1

≤ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑢),     ∀𝑢 ∈ ℜ𝑛

𝑇

𝑡=1

                         (𝟏)  

 

where e.g.,34 Complexity(u) = 𝑂(‖𝑢‖2).  𝑅(𝑇, 𝑢) is the regret, the performance of our algorithm minus the 

performance of linear predictor 𝑢. We aim to bound the “regret” of not knowing the optimal predictor in advance. 

Such bounds are very general and with additional assumptions can be converted either to batch convergence 

guarantees or generalization error guarantees35. Such a regret bound generalizes to 

 

∑(𝑦𝑡 − �̂�𝑡)2 − ∑(𝑦𝑡 − 𝑢𝑡 ∙ 𝑥𝑡)2

𝑇

𝑡=1

 ≤ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑢1,𝑢2, … , 𝑢𝑇),

𝑇

𝑡=1

 𝑢𝑡 ∈ ℜ𝑛 , 𝑖 = 1, … , 𝑇     (𝟐) 

 

where for example Complexity(𝑢1,𝑢2, … , 𝑢𝑇) = 𝑂(∑ ‖𝑢𝑡 − 𝑢𝑡+1‖2 𝑇−1
𝑡=1 ) models the complexity of a distribution 

changing gradually over time.  As another example, if we only have a few distinct distributions which repeat, a natural 

alternative measure is 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝑢1,𝑢2, … , 𝑢𝑇) = 𝑂(| ⋃ 𝑢𝑡|)𝑇
𝑡=1 . Both model nonstationary cases; we will focus on 

the 2nd complexity measure.  

Before describing the network version of this model, we introduce our network infrastructure model. 

SDC Enclave Model: The network consists of a set of (possibly overlapping) interconnected enclaves 

belonging to different coalition partners. Associated with each enclave is a controller that performs resource allocation 

and interacts with other enclave controllers. Last, edges connecting two enclaves have bandwidth and coalition 

constraints.  

 

 

Figure P8-2: Illustrating the multi-learner multi-modal learning model. Left: There are m 

learners and m independent data streams with one mode (color) per stream, thus no benefit in sharing 

information. Right: There are m learners and m dependent data streams, each with possibly multiple 

modes. The modes may be shared between streams. Now, there is a benefit of sharing information 

between learners. 

 

 

34 For simplicity, we have suppressed a number of terms in Complexity(.).  See e.g., [Cesa-Bianchi, Nicolò, Philip M. Long and 

Manfred K. Warmuth. “Worst-case quadratic loss bounds for prediction using linear functions and gradient descent.” IEEE 

transactions on neural networks 7 3 (1996): 604-19, Theorem IV.3] for full details. 

35 Cavallanti, Giovanni, Nicolò Cesa-Bianchi and Claudio Gentile. “Linear Algorithms for Online Multitask Classification.” COLT 

(2008). 
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Multi-Learner Multi-Modal Learning Model: The following figures illustrate the network learning model. 

We have m learners and S modes. Each learner corresponds to a row in the figures and each “modality” to a color.  In 

Figure P8-2a each learner’s data stream corresponds to a single mode, i.e., it is well-predicted by a single linear 

predictor 𝑢 ∈ ℜ𝑛.  In Figure P8-2b, each learner faces a data stream with multiple modes (colors) but modes may be 

shared across learners; thus learners 1 & 2 share the red mode but learners 2 & 3 do not share any mode.  Learners 

face the problem that they do not know when modes begin or end.  Our goal is to develop algorithms that exploit 

multi-modal data-streams with multiple learners. 

To illustrate this in terms of a practical scenario, consider a reconnaissance squad, in which squad members 

may be well-separated or clustered.  In the first scenario the warfighters are well-separated and each faces its own 

independent visual recognition problem.  In the second scenario the squad is not geographically separated and there 

are a series of spatially and temporally intermixed visual recognition tasks. 

We also need to model how learners interact (i.e., share information).  For example, in the above squad 

scenario, some pairs of warfighters might not be able to communicate, i.e., they may be too distant from one another 

or alternately belong to different coalition partners.  We model learner communications by a graph where vertices are 

learners and edges represent communication paths. Associated with each edge (path) are bandwidth, latency, etc. The 

absence of an edge may be due to the lack of a path between learners or due to a policy decision by one or more 

coalition partners. Moreover, bandwidth may also be reduced due to coalition policy decisions. This, we denote as the 

Learner Graph, which may change over time. 

 

 

Figure P8-3: Illustrating the multi-learner communication model. 

  

We propose the following research: 

1. Centralized Control in a Coalition Environment: The initial goal is to develop efficient algorithms, that 

exploit multi-modal data streams across multiple learners belonging to potentially different coalition partners.  

Each learner’s data stream will be routed to a master algorithm that combines the data and routes 
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predictions/actions of each individual learner. The frequency at which data is delivered from a learner may 

be affected by coalition policies.  We will develop performance guarantees on the regret. 

2. Time Complexity: The goal here is to improve the time-complexity of the control algorithm through 

development of approximations. 

3. Decentralized Control in a Coalition Environment: We will account for restrictions on how learners 

communicate. These restrictions will be modeled by communication constraints on the Learner Graph.  This 

is to meet restrictions on information sharing in a coalition environment. 

 

Subtask 8.1.2: Interactions between SDC infrastructure and distributed online learning 

The bounds derived in the previous section do not account for dynamics and randomness present in the 

infrastructure. Now we consider regret as a function of time, 𝑅′(𝑡, 𝑢), 𝑡 > 0 rather than the number of iterations 

(𝑅(𝑡, 𝑢), 𝑡 = 1,2, …, and derive bounds and convergence rates for this quantity. If each iteration takes exactly 𝜏 time, 

𝑅′(𝑡, 𝑢) = 𝑅(𝑡 𝜏⁄ , 𝑢).  Using results from the first thread, we will account for variabilities in processing and 

communication times.  In the case of centralized learning, the time to complete an iteration is the sum of a processing 

time and the additional time needed to collect results from other learners.  Consider a baseline where communication 

delays are independent and identical exponentially distributed. If the 𝑚 online learners report results to each other 

after every iteration (completely connected learner graph), each iteration will take 𝑂(log 𝑚) time.  Hence 𝑅′(𝑡, 𝑢) ≈

𝑅(
𝑡

log 𝑚
, 𝑢). In the case of decentralized learning, the structure of the learner graph also affects 𝑅′(𝑡, 𝑢).  For example, 

if the learner graph is 𝑘-regular, each iteration takes 𝑂(log 𝑘) time when communication times are exponentially 

distributed and 𝑅′(𝑡, 𝑢) ≈ 𝑅(
𝑡

log 𝑚𝑘
, 𝑢).  The goal of this subtask is to extend regret bounds from the first thread, 

𝑅(𝑡, 𝑢), to account for randomness in the infrastructure, 𝑅′(𝑡, 𝑢),  that then will be used to provide insight on how to 

design learner graphs that minimize regret. We will leverage results from previous work36, which studies how 

processing time variability affects convergence rate for the parameter server computing model. A previous result that 

maximizes convergence rate for a similar model subject to communication constraints was also devised37.  However, 

the existing work neither accounts for randomness encountered in tactical military environments nor coalition 

constraints, e.g., rate at which data is allowed to be transferred from a learner belonging to one coalition enclave to a 

learner belonging to a different coalition enclave.  Furthermore, neither work considers on-line learning.  

 

 

 

 

 

36 G. Neglia, G. Calbi, D. Towsley, G. Vardoyan. “The Role of Network Topology for Distributed Machine Learning,” 

INFOCOM’19,  2019. 

37 S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan.  “When edge meets learning: Adaptive control for 

resource-constrained distributed machine learning,” INFOCOM’18, 2018. 
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 (a)   (b) 

Figure P8-4: Markovian analysis of online learning 

 

We propose the following. 

1. Markovian online learning model. We model the learning process as a continuous time Markov chain 

(CTMC) describing the behavior of the online learners as a function of connectivity and allocated resources. 

Figure P8-4a illustrates a simple four-node learner graph, and Figure P8-4b the associated Markov chain. 

State 𝑃𝑖   denotes a learner processing 𝑖 steps ahead of the slowest learner and 𝑊𝑖 a learner waiting for results 

from its neighbors while 𝑖 steps ahead of the slowest learner. Here service times are exponentially distributed 

with mean 1/𝜇. This CTMC extends to larger systems and can be used to derive average times for learners 

to complete iterations. 

2. Mean field approximations. The above approach provides insight for small problems but will not scale.  

We will explore mean field approximations as a means to study large systems. We will theoretically 

investigate connectivity patterns for online learners using this approach. Learner heterogeneity and coalition 

constraints will be handled by introducing multiple classes of learners and adding ODEs for each class. 

3. Learner-focused models. Another approach is to model the behavior of individual learners. Prior to 

executing an iteration, a learner requires inputs from 𝑘 other learners. The iteration consists of processing 

followed by a communication step where the learner waits to hear from all 𝑘 learners. Denote the time 

between iterations as a cycle time. The rates at which inputs arrive are functions of cycle times of neighboring 

learners. If learners are homogenous, this results in a fixed-point problem with average cycle time as the 

unknown.  Learner heterogeneity and coalition constraints are handled as in 2) above. We will investigate 

the accuracy of this approach and sensitivity of average cycle time to various system parameters.  We 

conjecture that, as 𝑚 increases, average cycle time predictions will become more accurate. We will analyze 

the asymptotics as the number of learners approaches infinity. 

 

Subtask 8.1.3: Robustness against adversaries and network dynamics 

To enable efficient and reliable learning, learners need to receive data from their sources, and communicate 

with other learners. For centralized control, data streams at different learners are shared; while for distributed control, 

model parameters are constantly exchanged and updated. As such, we explore how to optimally place learners and 

allocate communication resources so that the online learning framework provides a required level of robustness against 

system dynamics, e.g., link/node failures, untrustworthy links, evolving policies, etc. Specifically, Figure P8-5 

illustrates the logical structure of the multi-learner multi-modal learning problem, where data sources, {𝐷𝑖}, are 

distributed across the entire network (𝐷𝑖 ∈ 𝑉) and each 𝐷𝑖  associates with one learner. One approach to improve 

robustness is to associate multiple learners to each data source, e.g., 𝐷4 (Figure P8-5) associates with two learners 𝑙4 

and 𝑙4
′  (e.g., primary and backup). Let 𝜑 denote the maximum number of potential failed/untrustworthy links, under 

which the required communication is guaranteed for a set of learners. Let 𝑉’ ⊂ 𝑉 be the set of nodes that can act as 
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learners (e.g., with sufficient computing capabilities). Our objective is to find the set of learners 𝐿 with 𝐿 ⊂ 𝑉’ and 

|𝐿| = 𝑛 (𝑛 is the total budget) that maximizes 𝜑.  

 

 

Figure P8-5: Robustness of distributed learning 

(primary and backup learners li and l’I associate with data cluster Di). 

This problem is challenging as multiple learners handling the same data source can operate in one of three 

ways: (i) they all process the same data; (ii) they divide the data from the source among them; (iii) one acts as primary 

and the rest as backups. For the first, we propose to locate the bottleneck that determines the value of φ, thus identifying 

critical subnetworks. Next, we investigate how learner redundancy affects the value of φ. We then apply these results 

to design efficient learner selection algorithms. For the second case, we examine an approach where multiple learners 

associated with a data source divide the data between them. Such a division will be dynamic to reflect changes in 

processing and communication resources. We will exploit results on multipath transport control38 and stream 

processing39 for this setting, where we will introduce data controllers to run at each learner that focus on efficient and 

fair use of communication and processing resources, and will account for variations in the cost of data streamed from 

the data sources. 

Last, we will explore the benefits of a primary-backup approach in providing robustness.  We will develop 

learner placement and communication allocation algorithms for this approach. 

Finally, if the value of φ corresponding to the optimal placement still cannot meet the coalition needs, we then 

explore how to jointly place learners and add highly reliable links (i.e., can always be utilized) to the network at the 

minimum cost so that the robustness requirement is satisfied. The challenge in this problem is that there are two types 

of links in the network (highly reliable links and links that may become unusable); therefore, simple edge-connectivity 

from the network graphical perspective cannot describe it, thus requiring a novel and efficient solution. 

Coalition policy constraints: In the above task description we have stated that we will account for restrictions 

placed on connectivity and bandwidth between enclaves belonging to different coalition partners that may be due to 

policy constraints.  In order to capture these restrictions properly and accurately, we will work with the task 7.1 

(belonging to P7), as they have a major focus on coalition policy.  This will be facilitated with the presence of one of 

our PIs, Liang Ma, who is also the lead of task 7.1.  

 

 

38 Key, P. Massoulie, L., Towsley, D. “Path selection and multipath congestion control,” Proceedings of INFOCOM’07, May 2007. 

39 Zhao, H., Xia, C.H., Liu, Z., Towsley, D. "A Unified Modeling Framework for Distributed Resource Allocation of General Fork 

and Join Processing Networks", Proceedings of 2010 ACM Sigmetrics, New York, NY, June 14-18, 2010. 


